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Abstract

We study model reduction techniques for frequency averaging in radiative heat transfer. Especially, we employ proper
orthogonal decomposition in combination with the method of snapshots to devise an automated a posteriori algorithm,
which helps to reduce significantly the dimensionality for further simulations. The reliability of the surrogate models is
tested using a rectangular geometry and we compare the results with two other reduced models, which are given by the
approximation using the weighted sum of gray gases and by an frequency averaged version of the so-called SPn model.
We present several numerical results underlining the feasibility of our approach.
� 2007 Elsevier Inc. All rights reserved.
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1. Introduction

The simulation of industrial high temperature processes requires one to take into account heat conduction
and convection as well as heat transfer via radiation, e.g. in simulation of gas turbine combustion chambers
[26,25], combustion in car engines or cooling of a hot glass melt [4,28]. Since the radiation field is dependent on
time and space as well as on frequency and the angular direction, a simulation using a full radiative heat trans-
fer model is computationally expensive. If the simulation is part of an optimization problem, it becomes
almost infeasible [2,14,5,19,21,20]. In order to decrease the dimensionality, several simplified models have been
developed, among them the Rosseland, Pn and SPn equations that replace directed radiation by a direction-
independent radiative flux [17,11]. The discretization with respect to frequencies is done by frequency band
models, the so-called gray model is a model with just one band. Another possibility to reduce the high dimen-
sional discrete phase space is to use adaptive discretization techniques [9].
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Realistic simulation of the cooling of glass or combustion has to take into account that some
frequency-dependent properties of the material show rapid variations even on small frequency intervals;
these rapid variations are also observed in experimental data or high precision simulations [17,25]. The
frequency band models require a high number of narrow bands to resolve rapid variations, causing
extreme demands on processing time and memory storage for the simulation. Here, we will discuss and
compare different strategies that try to work around these difficulties, while still providing results of high
precision.

Most approximate models which are employed to reduce the number of frequency bands are either
derived using asymptotic analysis, like in [12] where the so-called frequency averaged SPn equations are
derived, or using fitting techniques combined with approximations, like in the so-called weighted sum of

gray gases [17].
Here, we discuss an a posteriori method for automated frequency averaging based on proper orthogonal

decomposition (POD) with respect to the frequency variable. This method is widely discussed in literature dur-
ing the last two decades. The original concept goes back to Pearson [18]. The method is also known as Karh-
unen–Loève decomposition [8,13] or principal component analysis [7]. It provides an optimally ordered,
orthonormal basis in the least-squares sense for a given set of theoretical, experimental or computational data
[3]. POD falls into the general category of projection methods where the dynamical system is projected onto a
subspace of the original phase space. In combination with Galerkin projection it provides a powerful tool to
derive surrogate models for high dimensional or even infinite dimensional dynamical systems, since the sub-
space is composed of basis functions inheriting already special characteristics of the overall solution. This is in
contrast to standard finite element discretizations where the choice of the basis functions is in general indepen-
dent of the system dynamics.

This paper is organized as follows. In the remaining part of the introduction, we will present the well-
known SP1 equations on which we build our model reduction method of proper orthogonal decomposition
with respect to the frequency variable, that is the main subject of our paper. In Section 2, we focus on
POD, deriving it from SP1 band models, discussing its implementation and numerical results. Section 3 deals
with two other model reduction techniques, i.e. the frequency averaged SPn model and the weighted sum of
gray gases. Here, we present the first two dimensional simulations for the former model. Finally, Section 4
contains the comparison of all three discussed models and conclusions are given in Section 5.

1.1. The SP1 equations

The SP1 equations form the basis of our reduced models. Following an overview of the notation used, a
short introduction into the frequency-dependent and band formulation of SP1 is given in this subsection
(for details the reader is referred to the introductory sections of [9]).

1.1.1. Notation

The physical model is described using t for time, x for spatial coordinates, the temperature is denoted by T,
the radiation intensity by I. For the SPn models that include the SP1 model as their most basic case, the inten-
sity is replaced by direction-independent radiation fluxes / by integrating I over all directions. The model fur-
ther depends on the following physical parameters: r is a scattering, j an absorption coefficient; kc denotes the
thermal conductivity, hc the convective heat transfer coefficient. qm is the density, cm the specific heat capacity.
The refractive index of the medium is denoted by nm.

The equations presented here use non-dimensional variables; the scaling is given by
t� ¼ t
tref

; x� ¼ x
xref

; T � ¼ T
T ref

; I� ¼ I
I ref

; ð1aÞ

r� ¼ r
rref þ jref

; j� ¼ j
rref þ jref

; k�c ¼
kc

kc;ref

; h�c ¼
hc

hc;ref

: ð1bÞ
The subscript ‘‘ref’’ is used for the corresponding reference values, which are assumed to fulfill the
relations
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tref ¼ cmqmðrref þ jrefÞx2
ref

T ref

I ref

; ð2aÞ

kc;ref ¼
I ref

ðrref þ jrefÞT ref

; hc;ref ¼
I ref

T ref

: ð2bÞ
The parameter � is a reference opacity and given by
� ¼ 1

ðrref þ jrefÞxref

: ð3Þ
In the following, only the scaled values will be used, without denoting them explicitly with the stars. The ref-
erence values used in our numerical simulations can be found in Table 1. As we assume the absence of scatter-
ing in the medium, no rref is given, an r and r* are zero.

Let X be a bounded domain, subset of Rd , d 2 {1,2,3}, representing the geometry of the medium, and let n be
the outward normal of X on oX. Let (0, tend) be the time interval used in the simulation, and define Q and R by
Q :¼ X� ð0; tendÞ;
R :¼ oX� ð0; tendÞ:
1.1.2. Frequency-dependent SP1 equations

The frequency-dependent SP1 equations that can be derived as an approximation of the full radiative heat
transfer equations under the assumption of an optically thick, diffusive situation [11], are given by
otT �r � ðkcrT Þ ¼
Z 1

m0

r � 1

3ðrþ jÞr/

� �
dm; ð4aÞ

8m > m0 : ��2r � 1

3ðrþ jÞr/

� �
þ j/ ¼ 4pjB�glassðT ; mÞ ð4bÞ
in Q,
kcn � rT ¼ hc

�
ðT b � T Þ þ ap

�

Z m0

0

ðB�airðT b; mÞ � B�airðT ; mÞÞdm; ð4cÞ

�

3ðrþ jÞ n � r/ ¼ 1� 2r1

2þ 6r2

ð4pB�glassðT b; mÞ � /Þ ð4dÞ
on R, and
T ðx; 0Þ ¼ T 0ðxÞ; x 2 X ð4eÞ

as initial condition.

Here, T is the temperature of the medium and / is the radiative flux, defined as the integral of the radiation
intensity I over all directions [17]. Tb denotes the temperature at the boundary of the medium.
1
nce values

eter Value Description

18,704 s Reference time

0.1 m Reference length

1 K Reference temperature

5 W
m2 Reference radiation intensity

3 m�1 Reference absorption coefficient

1:672 W
mK Reference coefficient of thermal conductivity

5 W
m2K Reference convective heat transfer coefficient

2514:8 kg
m3 Density

1239:6 J
kgK Specific heat capacity
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The coefficients r1 and r2 are given as
r1 ¼ 0:2855742 r2 ¼ 0:1452082 ð5Þ

(see [11]). B�m is given by the scaled black-body radiation intensity at a frequency m for a temperature T Æ Tref
B�mðT ; mÞ ¼
BmðT � T ref ; mÞ

I ref

; ð6Þ
where Bm is the Planck function describing monochromatic black-body intensity
BmðT ; mÞ ¼
n2

m

c2
0

� 2hPm3

expðhPm=ðkBT ÞÞ � 1
: ð7Þ
In this expression, hP = 6.62608 · 10�34 J s is the Planck, kB = 1.38066 · 10�23 J/K is the Boltzmann constant.
nm is the refractive index giving the ratio of the speed of light in vacuum c0 and in the medium c
nm ¼
c0

c
: ð8Þ
For glass, nglass = 1.46 is a valid choice, for the surrounding air we set nair = 1. m0 is the frequency up to which
the glass is opaque and absorbs radiation. The opacity in the rest of the spectrum is given by 1/j, and r is a
scattering coefficient.

Remark 1.1. For a mathematical investigation of system (4) we refer to [20], where also an optimal control
problem is considered. During the last years this model proved to be a reliable substitute for the full radiative
heat transfer problem [26,25,11].
1.1.3. Frequency band SP1 equations

The frequency band SP1 equations are derived by dividing the frequency space into discrete bands
½mi�1; mi�; i ¼ 1; 2; . . . ;N and integrating the frequency-dependent SP1 equations over these bands using a sim-
ple quadrature rule,
/i :¼
Z mi

mi�1

/dm; ð9Þ
i.e. we use a piecewise constant finite element ansatz with respect to the frequency. Under the assumption that
j and r are (nearly) constant on the frequency bands
jðmÞ ¼ ji; rðmÞ ¼ ri for m 2�mi�1; mi� ð10Þ
we get the SP1 frequency band equations with
otT �r � ðkcrT Þ ¼
XN

i¼1

r � 1

3ðri þ jiÞ
r/i

� �
; ð11aÞ

� �2r � 1

3ðri þ jiÞ
r/i

� �
þ ji/i ¼ 4pji

Z mi

mi�1

B�glassðT ; mÞdm ð11bÞ
for i = 1,2, . . . ,N in the interior, and
kcn � rT ¼ hc

�
ðT b � T Þ þ ap

�

Z m0

0

ðB�airðT b; mÞ � B�airðT ; mÞÞdm; ð11cÞ

�

3ðri þ jiÞ
n � r/i ¼

1� 2r1

2þ 6r2

4p
Z mi

mi�1

B�glassðT b; mÞdm� /i

� �
ð11dÞ
for i = 1,2, . . . ,N on the boundary, and finally
T ðx; 0Þ ¼ T 0ðxÞ
as initial condition.



716 R. Pinnau, A. Schulze / Journal of Computational Physics 226 (2007) 712–731
Remark 1.2. The high number of frequency bands required in applications cause the above system to be of
significant size. One often encounters up to 300 frequency bands, i.e. one has to solve one nonlinear parabolic
PDE coupled with 300 elliptic equations. For SPn models with n higher than 1, this problem will be even
worse, as new flux variables are needed for each radiation band [11].
2. POD and basis-transformation of the SP1 equations

After discussing SP1 in its frequency-dependent and band variant, we will now focus on a basis-trans-
formed band variant of SP1, which will, in combination with proper orthogonal decomposition (POD),
finally lead to the new POD frequency averaged model. The presentation of the POD equations for
SP1 will be followed by details concerning our implementation and the numerical results that were
obtained.

2.1. Basis-transformed frequency band SP1 equations

In Section 1.1.3, frequency bands are chosen so that the absorptivity of the medium is almost constant over
each band. For realistic spectral data with large variations of the absorption coefficient, this approach leads to
an undesirably high number of required bands and thus to a high number of flux variables. Therefore, it is
important to develop a variant of the frequency band SP1 model that allows to reduce the number of flux vari-
ables by representing the full spectrum using fewer coordinates.

This is done by setting
/i :¼
XM

j¼1

mijwj; ð12Þ
where M 6 N, in most cases M� N, thus representing the ‘‘natural bands’’ /i by ‘‘artificial bands’’ wj.
One possibility to find the mij is the application of proper orthogonal decomposition to discover the most
important frequency modes. This approach will be discussed in detail in the next section. Meanwhile, mij

will be treated as given data. However, we will assume that the matrix P :¼ (mij)i,j is orthonormal. This
allows for simpler notation, as the matrix PT Æ P that will appear in the flux equations in X will be just
the identity.

Applying the basis-transformation to the frequency band SP1 equations of the last chapter, we get
otT �r � ðkcrT Þ ¼
XM

j¼1

r �
XN

i¼1

mij

3ðri þ jiÞ
rwj

 !
; ð13aÞ

�
XM

k¼1

�2r �
XN

i¼1

mijmik

3jiðri þ jiÞ
rwk

 !
þ wj ¼ 4p

XN

i¼1

mij

Z mi

mi�1

B�glassðT ; mÞdm ð13bÞ
in Q and
kcn � rT ¼ hc

�
ðT b � T Þ þ ap

�

Z m0

0

ðB�airðT b; mÞ � B�airðT ; mÞÞdm; ð13cÞ

XM

k¼1

�
XN

i¼1

mijmik

3jiðri þ jiÞ
n � rwk

¼ 1� 2r1

2þ 6r2

4p
XN

i¼1

mij

ji

Z mi

mi�1

B�glassðT b; mÞdm�
XM

k¼1

XN

i¼1

mijmik

ji
wk

 !
ð13dÞ
on R.
As one can see from these equations, all summations over i 2 f1; . . . ;Ng can be done in advance, giving the

vectors
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A1 :¼
XN

i¼1

mij

ðri þ jiÞ

 !
j

¼ P T � 1

ðri þ jiÞ

� �N

i¼1

; ð14aÞ

A2 :¼
XN

i¼1

mij

ji

 !
j

¼ P T � 1

ji

� �N

i¼1

; ð14bÞ
(where A1 = A2 ¼: A when scattering is neglected) and the matrices
B :¼
XN

i¼1

mijmik

ji

 !
j;k

¼ P T � 1

ji

� �i¼N ;j¼M

i¼1;j¼1

� P

 !
; ð14cÞ

G :¼
XN

i¼1

mijmik

jiðri þ jiÞ

 !
j;k

¼ P T � 1

jiðri þ jiÞ

� �i¼N ;j¼M

i¼1;j¼1

� P

 !
; ð14dÞ
with the matrix P defined as P ¼ ðmijÞi;j; i 2 f1; . . . ;Ng; j 2 f1; . . . ;Mg (for POD, P is the POD basis matrix)
and � being the element-wise matrix product. The matrices
1

jiðri þ jiÞ

� �i¼N ;j¼M

i¼1;j¼1

and
1

ji

� �i¼N ;j¼M

i¼1;j¼1

ð15Þ
are the concatenation of the N-column-vectors ðj�1
i ðri þ jiÞ�1Þi and ðj�1

i Þi, respectively to a matrix of N rows
and M columns.

Remark 2.1. If scattering can be neglected (r = 0), absorption is space-independent and additionally the
condition
PP Tdiagðj�1
i Þi P ¼ diagðj�1

i ÞiP ð16Þ

holds. Due to the special structure of the matrices B and G given above, one can apply diagonalization tech-
niques to convert these (full) matrices simultaneously to diagonal matrices and increase the performance of the
algorithm even more (see [23]). This is what we call diagonalized POD. In addition to being more efficient,
diagonalized POD produces frequency bands that do not couple and can thus be interpreted as a generaliza-
tion of band-models (although the frequency modes are linear-independent, they overlap strongly, what is not
the case for conventional frequency band models).

In general, Eq. (16) can be expected to be approximately satisfied for a sufficient number of POD frequency
bands, as this equation states that a spectrum initially from the POD spectral subspace traveling through the
medium and thus undergoing wavelength-dependent absorption can be represented again in the POD spectral
subspace (the equation is certainly fulfilled for M = N). In this case diagonalizing B (or G) will lead to
transformation matrices that also transform G (or B) to a strongly diagonally dominant form, where the off-
diagonal elements are by orders of magnitude smaller than the ones on the diagonal.
2.2. Computation of an optimal frequency basis using POD

In the discussion of the basis-transformed SP1 variant above, we left open the details of how to find a suit-
able basis. Now we use proper orthogonal decomposition with respect to the frequency variable that will yield
an optimal result in the least-squares sense.

The problem that has to be dealt with in our context is the question whether it is possible to express the
(discrete) spectra F 1 :¼ ð/iÞ

N
i¼1 that are encountered in all grid points of the discretization of X · (0, tend) in

time and space using a vector F 2 :¼ ðwjÞ
M
j¼1 of flux variables with a dimension M considerably smaller than

the number N of frequency bands. In the ideal case, the representation F1 = P Æ F2 should be exact. As this
is not possible in general, we demand that the approximation error iF1 � P Æ F2i in a suitable norm should
be minimized for given dimensions N and M.

This problem is solved by proper orthogonal decomposition [10,6], which is an a posteriori. However, being
a data based method, one solution of the original problem is necessary in order to compute the suitable basis
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transform. This is not as bad as it might sound, as the basis computed from this initial dataset can be used for
a broad range of similar problems, what is very important when thinking of applying this model reduction
technique in the context of optimal control.

The initial solution of the full problem yields via the method of snapshots [27] spectral data eS ¼ ðF 1;iÞi, i 2 I,
for each grid point in space and time. This is computationally expensive for large size of I. Hence, we replace
the complete set of spectral information by a suitable subset S = (F1,j)j, j 2 J � I, that is still representative. In
our case (for rectangular geometries and rectangular grids), we introduce a rectangular spatial subgrid. We
select equally spaced subvectors of the vectors of grid coordinates in each spatial dimension, and similar
for the temporal discretization. The snapshots are then evaluated on this coarser subgrid.

In order to find a small basis of a subspace of the span of all F1,i, i 2 I, that allows the approximate rep-
resentation of all F1,i up to high accuracy, we build the correlation matrix C given by
C ¼ ST � S; ð17Þ

using the scalar product of RN . C is positive semidefinite and all eigenvalues di of C are therefore real and non-
negative. Using appropriate numerical algorithms, the eigenvectors vi (sorted by decreasing eigenvalue di) can
be computed, combined into a matrix V and the frequency eigenmodes matrix E is given by
E ¼ S � V : ð18Þ

From this matrix and the opacity dataset, the vector A and the matrices B and G can be computed. After

optional diagonalization of B and G (and corresponding updates to P and A) for diagonalized POD, the POD
dataset is complete.

Remark 2.2. It can be shown that the POD basis vectors are ordered in a way that the approximation of the
spectral snapshots using the first k basis vectors is the best approximation that can be obtained using an
arbitrary basis of k vectors [10].

Still, one has to decide how many basis vectors will be selected for the reduced spectral model. In terms of a
dynamical system, large eigenvalues correspond to main characteristics of the system, while small eigenvalues
give only small perturbations of the overall dynamics. The goal is to choose ‘ small enough while the relative

information content [1] of the basis defined by
Ið‘Þ :¼
P‘

k¼1dkPN
k¼1dk

ð19Þ
is near to one. Typically, the magnitude of the eigenvalues decreases very rapidly for the first values, so that
numbers of eight, five and sometimes even less eigenvectors proved to be enough for simulations with satis-
fying accuracy. This will also be seen in the presentation of the computed eigenmodes in 2.4.

The algorithm used to generate the POD parameter set is given below.

Algorithm 2.3. Algorithm for computing the POD coefficient dataset
begin

	 let m be the number of desired POD bands
	 load previously computed simulation dataset and extract spectral snapshots
	 optional: compute time derivatives of simulated data and add samples to the set of samples from the

previous step
	 form the sample matrix S with the samples as columns
	 compute correlation C matrix as C: = ST Æ S

	 compute eigenvectors vi and eigenvalues di of correlation matrix C, sorted so that di > di+1

	 form the matrix V with the vi as its columns
	 compute the full frequency eigenmode matrix eE as eE :¼ S � V
	 select the first m columns of eE into the eigenmode matrix P: P ¼ eEð:; 1 : mÞ
	 optional: normalize the columns of P so that they all have norm 1
	 compute
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 k1 as the column vector of values 1/ji


 K1 as the column vector of values 1/ji, repeated into a matrix of m columns

 K2 as the column vector of values 1=j2

i , repeated into a matrix of m columns

	 and compute

 A: = PT Æ k1


 B: = PT Æ (K1 � P)

 G: = PT Æ (K2 � P)

	 save the matrices A, B, G and P as the POD parameter set

end

Remark 2.4. A variant of this algorithm replaces the matrix C = ST Æ S used above by eC :¼ S � ST and
computes eigenvectors and eigenvalues of eC . It can be shown that the non-zero eigenvalues of C and eC are
identical. For a large number of snapshots, the matrix eC is smaller than C, so that the eigenvalue/eigenvector
analysis is numerically cheaper.
2.3. Implementation and numerical results

Now we present numerical results and compare them to two other reference models. The physical param-
eters used for all simulations are given in Table 2. Due to the choice of the scaling coefficients, the scaled values
k�c and h�c are both identical to 1. The frequency-dependent absorption coefficients for a typical glass sample
are given in Fig. 1 (the data was provided by the Fraunhofer ITWM (Kaiserslautern), compare also the data
presented in [24]).
Table 2
Physical properties

Parameter Value Description

kc 1:672 W
mK Coefficient of thermal conductivity

hc 5 W
m2K Convective heat transfer coefficient

0 1 2 3 4 5 6

10
5

10
4

10
3

10
2

10
1

Absorption curve

wavelength [μm] 

ab
so

rp
tiv

ity

Fig. 1. Absorption curve (wavelength-dependency of absorption coefficient j).
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The geometry was the square [�1,1] · [�1,1] in scaled coordinates, corresponding to an edge length of
0.2 m; in order to analyze the performance of the algorithm also for non-square geometries, a second test
geometry of [�3,3] · [�1,1] in scaled coordinates was used (computation #3). The material was cooled in
the scaled time interval [0, 0.1], corresponding to approximately 30 min of cooling time (in order to verify
our good results also for faster cooling scenarios (with significant boundary effects on the medium tempera-
ture), we also used a scaled time interval [0,0.03] (computation #2)). The boundary temperature was decreased
linearly from an initial temperature of 1000 K (that was also the initial temperature of the glass) to 400 K. For
simulations that show the good suitability of the POD dataset generated for this cooling scenario, the initial
temperature was modified within the values of 800 K, 900 K, 1100 K and 1200 K.

In order to create easily comparable results, all simulations (for the full and several reduced models) were
based on identical numerical settings. The spatial domain was discretized using a 25 · 25 grid (45 · 15 for the
non-square geometry). The spatial discretization of the differential equations was accomplished using standard
linear finite elements. The time interval was discretized using an equidistant grid of 1250 intervals. The time dis-
cretization was done using a semiimplicit scheme based on a modified implicit Euler’s method. The semiimplicit
approach also simplified the implementation of the highly nonlinear GSP2 model (discussed in Section 3.2).

The snapshots were taken on a rectangular subgrid consisting of every sixth row and column of the grid of
the spatial discretization (every eighth in the first and every fourth in the second spatial dimension for the non-
square geometry) and every seventh grid point of the temporal discretization.

Remark 2.5. For the spatial and temporal discretization described above, a model consisting of 283 frequency
bands yields a total of 25 · 25 · 1250 · 284 � 2 · 108 degrees of freedom. A finer grid, higher spatial
dimension or the use of an SPn model with n > 2, which could be desirable in practical use, even worsens the
size of the problem. These numbers show that some sort of model reduction is unavoidable for solving real life
problems (especially when optimization problems are considered).
2.4. Computed frequency eigenmodes

As outlined in Section 2.2, computing POD bands consists of taking spectral snapshots from a simulation
using the full model, computing the eigenvalues and eigenvectors of the correlation matrix of these snapshots,
and selecting eigenvectors with the highest eigenvalues to compute the POD bands. Based on a simulation
using the full model, POD datasets for 1, 2, 3, 4, 6, 8 and 10 artificial POD bands were created. The informa-
tion content of the first 10 eigenmodes computed from the full model snapshots are given in Tables 3–5. The
third column contains the cumulative relative information content of all modes up to the given index, as dif-
ference from total 100%. As one can clearly see, the first mode dominates all others in all computations,
including faster cooling scenarios and non-square geometries.

Figs. 2–4 show the frequency eigenmodes computed for our POD band models. The left plot displays the
first three, the right plot the fourth to the sixth eigenmode. Results are given for the reference computation
(#1) as well as the fast cooling scenario (computation #2) and the problem involving a non-square geometry
Table 3
Information content of POD modes, computation #1 (see (19))

Mode # Rel. inform. content (%) Cum. rel. inform. content (%)

1 99.15691 100 � 0.843082
2 0.645072 100 � 0.198010
3 0.193857 100 � 0.004152
4 0.003498 100 � 6.537909 · 10�04

5 3.822992 · 10�04 100 � 2.714917 · 10�04

6 1.870858 · 10�04 100 � 8.440595 · 10�05

7 7.086223 · 10�05 100 � 1.354372 · 10�05

8 6.619109 · 10�05 100 � 6.924619 · 10�06

9 4.079531 · 10�06 100 � 2.845087 · 10�06

10 1.849336 · 10�06 100 � 9.957516 · 10�07



Table 4
Information content of POD modes, computation #2 (fast cooling) (see (19))

Mode # Rel. inform. content (%) Cum. rel. inform. content (%)

1 99.47606 100 � 0.523933
2 0.431947 100 � 0.091985
3 0.089304 100 � 0.002681
4 0.002214 100 � 4.670679 · 10�04

5 2.416379 · 10�04 100 � 2.254299 · 10�04

6 1.546981 · 10�04 100 � 7.073183 · 10�05

7 3.955756 · 10�05 100 � 3.117427 · 10�05

8 1.683318 · 10�05 100 � 1.434108 · 10�05

9 9.274093 · 10�06 100 � 5.066990 · 10�06

10 4.040309 · 10�06 100 � 1.026680 · 10�06

Table 5
Information content of POD modes, computation #3 (non-square geometry) (see (19))

Mode # Rel. inform. content (%) Cum. rel. inform. content (%)

1 99.49554 100 � 0.504456
2 0.471974 100 � 0.032481
3 0.028188 100 � 0.004293
4 0.003066 100 � 0.001226
5 0.001096 100 � 1.298552 · 10�04

6 8.534912 · 10�05 100 � 4.450616 · 10�05

7 3.407349 · 10�05 100 � 1.043267 · 10�05

8 5.222800 · 10�06 100 � 5.209877 · 10�06

9 3.063882 · 10�06 100 � 2.145995 · 10�06

10 8.975991 · 10�07 100 � 1.248396 · 10�06
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Fig. 2. POD frequency modes (computation #1).
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(computation #3). The first mode remains almost unchanged in all computations, with increasing differences
for the following modes.

2.5. Simulation results

The primary goal for the POD model reduction technique is to provide an efficient method for high-quality
approximation of the full model. The following figures show the approximation error of POD with different
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Fig. 3. POD frequency modes (computation #2, fast cooling).

–1

–0.8

–0.6

–0.4

–0.2

–1

–0.8

–0.6

–0.4

–0.2

1 1.5 2 2.5 3 3.5
x 10

14

0

0.2

0.4

0.6

0.8

1
Frequency Modes (computation #3)

frequency [Hz]

1
2
3

1 1.5 2 2.5 3 3.5
x 10

14

0

0.2

0.4

0.6

0.8

1
Frequency Modes (computation #3, contd.)

frequency [Hz]

4
5
6

Fig. 4. POD frequency modes (computation #3, non-square geometry).

722 R. Pinnau, A. Schulze / Journal of Computational Physics 226 (2007) 712–731
numbers of bands; in the two plots in Figs. 5–7, the evolution of the mean and maximum error over time is
shown, while the plots in Fig. 8 show cuts of the spatial distribution of the approximation error for the last
time step. It should be observed that 8 band POD yields a worse approximation than 6 band POD, while 10
band POD is again better than 6 band POD. This can be attributed to the fact that POD finds a best approx-
imating subspace, but not the best approximation for the system dynamics. But there are recent results which
allow to account also for this effect [16,15,22]. Further, we present in Fig. 9 the spatial distribution of the cor-
responding temperatures.

Remark 2.6. From the data presented, it is evident that the POD approximation is worst near the boundary
for low number of bands in the reduced model. One reason for this effect is the presence of boundary layers. In
order to show that POD results can be enhanced without the need for more complex reduced models, we
modified the POD method like proposed in [6]. We increased the dataset used in the proper orthogonal
decomposition step by temporal derivatives of the data used so far. This gives higher priority to faster varying
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modes, i.e. the boundary layers. The plots in Fig. 10 show comparisons between the original 3 band POD
results and the new variant. It can be seen that both maximum and mean error could be reduced noticeably.
2.5.1. Dependency of the approximation quality on the cooling scenario

Being an a posteriori method, POD requires a solution of the full system in order to compute the POD coef-
ficients. As the full model has extreme demands on storage and computation time, it is important for the appli-
cability of POD in real-world problems to know about the sensitivity of the approximation quality with
respect to variations in the cooling scenario. Optimization problems, for example, change the boundary tem-
perature function Tb in each step of the optimization.

Fortunately, we were able to show that POD gives excellent approximations even for modification of the
initial temperature (of the medium and the oven) by ±200 K. The mean and maximum errors for 4 and 10
band POD in simulations using the modified initial temperatures are shown in Fig. 11. Evidently, the depen-
dency on the cooling profile is only marginal, and the POD datasets computed for a cooling from 1000 K to
400 K can be used over a wide range of modified profiles. In the case of 4 band POD, the approximation error
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decreases with decreasing initial temperature, even below the error for the profile the POD dataset was initially
generated for. For 10 band POD the result is similar.

3. Other model reduction techniques

In this section, we shortly present two other well-known methods to reduce the dimensionality of the dis-
cretization in the frequency domains and compare them with the method we have proposed above. The first
method, known as weighted sum of gray gases, is based on a physical interpretation of the problem and tries to
fit certain parameters to match physical properties of the cooling medium [17]. The second model is derived
from asymptotical analysis of the SP2 equations. Model reduction is performed by analytic integration over
the frequency domain, yielding a single-band model with opacities that are dependent on temperature [12].

3.1. Weighted sum of gray gases (WSGG)

The WSGG model tries to approximate the full model by substituting the medium with a number of gray
media (known as ‘‘gray gases’’ because WSGG was first implemented for gaseous media). The opacities and
fractions of these gray media are found by solving a fitting problem for the absorptivity of the medium, a
physical property that will be introduced below.

The total absorptivity and emissivity of a homogeneous, isothermal medium at temperature T is given by
aðT ; sÞ ¼ �ðT ; sÞ ¼ 1

Ib;totðT Þ

Z 1

0

ð1� expð�jðmÞsÞÞIbðm; T Þdm; ð20Þ
where Ib(m,T) is the Planck radiation density at frequency m for a black body at temperature T and Ib,tot is the
integral of Ib over the whole spectrum.

The model parameters of the weighted sum of gray gases model are the weighting factors for the linear com-
bination of the results for the gray gases and the absorption coefficients of these gray gases. These parameters
are found by fitting the total emissivity on a line of characteristic length in the medium with the total emissivity
of the linear combination of the gray gases. This yields
1

Ib;totðT Þ

Z 1

0

ð1� expð�jðmÞsÞÞIbðm; T Þdm �
XK

k¼0

ð1� expðjksÞÞakðT Þ; ð21Þ
where m is the frequency, j(m) is the frequency-dependent absorptivity of the real material, jk is the absorptiv-
ity of the kth gray gas, T is the temperature and s is a length-parameter. The ak are the weighting factors and
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may depend on the temperature of the medium, whereas the jk are assumed to be temperature-independent. In
order to find appropriate values for ak and jk, a (highly nonlinear) least-squares fit is done using a set of tem-
peratures T n; n ¼ 1; . . . ;N T , and a set of path length parameters sn; n ¼ 1; . . . ;Ns, suited to the problem.

Remark 3.1. As we just outlined, the coefficients of WSGG models are found by a nonlinear least squares fit.
Being an a priori method, the fit requires no data from a previous full-model simulation, as was the case for
the POD method, and so far, WSGG seems to be significantly easier in its application. However, the choice of
the parameter pathlength sn; n ¼ 1; . . . ;Ns, and temperature T n; n ¼ 1; . . . ;NT , that is used is crucial for the
quality of the fit, and without any knowledge of the problem geometry, macroscopic properties of the
radiation field and temperatures encountered in the cooling process, it is not clear how to choose these
parameter appropriately. The advantage of an a priori method is turned into a disadvantage, because one has
to resort to heuristic strategies in order to get WSGG coefficients that lead to good approximation of cooling
behavior.

Four datasets for 10 gray gases each are computed, varying the optical pathlengths used in the nonlinear fit,
as given in Table 6. The grid consists of approximately 1000 equally distributed grid points for the first three
fits, approximately 500 points for the last fit. All fits are computed over the temperature range from 550 K to
1000 K. The fitting points are equally distributed, using a grid size of 50 K (the size of the optimization prob-
lem depends on the temperature grid size. No finer temperature grid is chosen to keep the computational
efforts to a reasonable level of 110 variables).

Relatively good fit results were only obtained using the last two datasets, indicating that the optical path-
lengths used in the first two fits were too small. The last dataset gives the best results.

For each of the four datasets simulations were run and results compared to the solution of the full system.
The temporal evolution of the approximation error is given in Fig. 12. Note that no results are available for
the first dataset, as the corresponding simulation failed to converge. The error graphs show similar behavior,
Table 6
WSGG fit parameters

Dataset # Pathlength interval [m] Grid size [m] # of grid points

1 [0.0001,0.01] 0.00001 991
2 [0.002,0.2] 0.0002 991
3 [0.002,1] 0.001 999
4 [0.01,0.5] 0.001 491
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Fig. 12. Approximation error for WSGG model.
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the mean error increasing over time, with the fourth dataset giving the best results, although the fit was done
over a subset of the fit points for the third dataset.

3.2. Frequency averaged SPn-equations

Another possibility to derive reduced models in the frequency domain is by integrating the frequency-
dependent fluxes with respect to the frequency m analytically, thus defining a new state variable and producing
a frequency averaged single band model. This is done by the GSP2 model discussed in [12], where the following
equations are derived for homogeneous media. Given the auxiliary functions
fnðT Þ :¼ 4p
nþ 2

Z 1

m1

Bðm; T Þ
jnðmÞ dm ð22Þ
for n = 1,2,3 (not correlated to the n in GSPn) and variables
a1 :¼ 4

5
� 1þ 3r2

1� 4r3

; ð23Þ

a2 :¼ 6

5
� 1� 2r1

1� 4r3

; ð24Þ
where the parameters r1, r2 and r3 are moments of the reflectivity of the medium that depend on nglass and are,
in our case for nglass :¼ 1.46, given as
r1 :¼ 0:2855741980;

r2 :¼ 0:1452081942;

r3 :¼ 0:08373343569;
the equations in Q are given by
oT
ot
¼ r � ðkrT Þ þ r2W ; ð25Þ

� �2r � f 03ðT Þ
f 01ðT Þ

rW
� �

þ W ¼ f1ðT Þ; ð26Þ
whereas the boundary conditions on R are
�kn � rT ¼ hðT b � T Þ þ ap
Z m1

0

½BðairÞðm; T bÞ � BðairÞðm; T Þ�dm; ð27Þ

W þ 4a1�

3
� f
0
2ðT Þ

f 01ðT Þ

� �
n � rW ¼ f1ðT Þ þ a2½f1ðT bÞ � f1ðT Þ�: ð28Þ
The initial condition of the differential–algebraic parabolic system is given as usual by
T ðx; 0Þ ¼ T 0ðxÞ: ð29Þ
In this notation, P(air) means that the corresponding Planckian has to be computed using the refractive index
of air (that is, 1) instead of glass (nglass). In this GSP2 model, the new variable W is defined as
W ðx; tÞ :¼ 1

3

Z 1

m1

/ðx; m; tÞ
jðmÞ dm; ð30Þ
thus, for space-independent j, W is a absorptivity-scaled flux.

3.2.1. Implementation and numerical results

The GSP2 equations can be rewritten substituting the functions fn, n 2 {1,2,3}, to take a form that allows
for easier comparison with the SPn equations. The equations on the domain X are then given by
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oT
ot
¼ rðkrT Þ þ

X
i2I

r2W i; ð31Þ

� �2br

P
j2JðiÞ

P 0j
j3

jP
j2JðiÞ

P 0j
jj

rW i

0B@
1CAþ W i ¼

4p
3

X
j2JðiÞ

P j

jj
8i 2 I ; ð32Þ
whereas the boundary conditions are
kn � rT ¼ h
�
ðT b � T Þ þ ap

�
ðP ðaÞ0;b � P ðaÞ0 Þ; ð33Þ

W i þ c�

P
j2JðiÞ

P 0j
j2

jP
j2JðiÞ

P 0j
jj

n � rW i ¼
4p
3

di 8i 2 I : ð34Þ
In this notation, Pi are the Planck integrals, given by
P iðT Þ ¼
Z miþ1

mi

Bðm; T Þdm; ð35Þ
the parameters b, c and di are given by
b ¼
1
3

SP1;
3
5

SP2;GSP2;

(
ð36Þ

c ¼
2
3
� 1þ3r2

1�2r1
SP1;

4
5
� 1þ3r2

1�4r3
SP2;GSP2;

(
ð37Þ

di ¼

P
j2JðiÞ

P j;b

jj
SP1;P

j2JðiÞ

P j

jj
þ 6

5
� 1�2r1

1�4r3

P j;b�P j

jj

h i
SP2;GSP2

8>><>>: ð38Þ
and the index sets I and J are given by
I ¼
f1; . . . ; ng SP1; SP2;

f1g GSP2;

�
ð39Þ

JðiÞ ¼
fig SP1; SP2;

f1; . . . ; ng GSP2:

�
ð40Þ
It should be noted that the quotients
P
j2JðiÞ

P 0j
j3

jP
j2JðiÞ

P 0j
jj

and

P
j2JðiÞ

P 0j
j2

jP
j2JðiÞ

P 0j
jj

ð41Þ
reduce to j�2 and j�1, respectively, for SP1 and SP2, as J(i) = {i}. Because of the significant effort to compute
the derivatives of the Planck integrals, P 0j, this substitution is essential for an efficient implementation of the
non-averaged models, and at the same time the most significant bottleneck of the GSP2 model. In our imple-
mentation, we used a semiimplicit discretization that computed the flux equations based on the temperatures
from the previous step.

While the WSGG model reduction (and POD model reduction we have presented so far) was done on the
SP1 equations for simplicity, the frequency-averaged model reduction was implemented for the SP2 equations,
as GSP1 is identical to the Rosseland approximation and therefore of much lower accuracy than SP1 [12,17].
In order to compare approximation quality and numerical effort of GSP2 to POD, a SP2-based variant of POD
was also implemented (the differences of SP1 and SP2 are only marginal, as can be seen from the equations in
the previous subsection, so that there should arise no need for a detailed discussion of SP2-based POD).
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The first plot in Fig. 13 shows the approximation error of our SP2-based POD implementation. In general,
the approximation is not quite as good as for SP1, as the SP2 model yields solutions with higher variance in
space, which is hard for POD to approximate (as was already seen for boundary layers above). The second
plot in Fig. 13 shows the corresponding error for GSP2. The approximation is significantly worse.

4. Comparison of the three frequency averaging techniques

When comparing the numerical effort of WSGG and POD, both methods show advantages and disadvan-
tages. POD requires a solution of the full 283-band system. On the other hand, WSGG requires only a param-
eter fit, which is, although highly nonlinear, computationally cheaper. The WSGG calculations were done
using a WSGG model consisting of 10 gray gases, so that there were no advantages in computation time
on the side of WSGG, because 10 was also the highest numbers of bands used for POD. On the other hand,
POD achieves much better results, as long as the number of artificial frequency bands is high enough. For
POD models consisting of less than six bands, relatively large temperature errors were encountered at the
boundary of the medium. This seems to indicate that the first frequency bands describe the spectrum in the
core of the medium, whereas frequency bands corresponding to radiation modes with lower eigenvalues take
care of the boundary effects. The WSGG model end temperature errors differ fundamentally from the POD
errors. While POD has large errors at the boundary and gives good results for the core of the medium even
for low number of bands, WSGG shows low errors at the boundary and large errors in the core.

Further, it is interesting to investigate whether GSP2 or POD lead to better approximation; in order to be as
fair as possible, a single band POD should be used in this comparison. Even single band POD performs sig-
nificantly better than GSP2, and even POD with six bands still outperforms GSP2 with respect to both, accu-
racy and CPU time requirements.

5. Conclusion

In this paper, we presented a POD based frequency averaging method for simulating temperature and radi-
ation in high temperature processes. We showed that, using this method, significantly better results can be
obtained with similar or less numerical effort (if the full solution of the system required for POD is not taken
into account, as this is necessary only once and the POD models generated can be used for many simulations).
POD does not require special engineering knowledge, as is the case for WSGG. POD can be used as a fully
automatic black box algorithm for model reduction, requiring no user interaction at all. Even more interest-
ing, POD was also able to outperform GSP2, which has a much stronger theoretical background.
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[11] E.W. Larsen, G. Thömmes, A. Klar, M. Seaı̈d, T. Götz, Simplified PN approximations to the equations of radiative heat transfer and

applications, J. Comput. Phys. 183 (2002) 652–675.
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residual methods, Comput. Mech. 31 (2003).
[17] M.F. Modest, Radiative Heat Transfer, Academic Press.
[18] K. Pearson, On lines and planes of closest to points in space, Philos. Mag. 2 (1901) 609–629.
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